Automatic segmentation of white matter lesions in T1-weighted brain MR images
نویسندگان
چکیده
White matter lesions are common brain abnormalities. In this paper, an automatic method for segmentation of white matter lesions in T1-weighted brain magnetic resonance (MR) images is presented. A patient’s T1-weighted MR image is first segmented into the three major tissue types, white matter (WM), gray matter (GM) and cerebral spinal fluid (CSF) solely based on each voxel’s intensity. Since WM lesions are typically classified as GM based on their intensity characteristics, the GM class is then separated into normal GM and WM lesions. This is accomplished using a statistical model of tissue distribution of healthy brains in a stereotaxic space. The proposed method is tested on 10 MR images with WM lesions and the results of the method are visually compared with WM lesions manually labeled by an experienced radiologist.
منابع مشابه
White Matter Lesion Segmentation from Volumetric MR Images
White matter lesions are common pathological findings in MR tomograms of elderly subjects. These lesions are typically caused by small vessel diseases (e.g., due to hypertension, diabetes). In this paper, we introduce an automatic algorithm for segmentation of white matter lesions from volumetric MR images. In the literature, there are methods based on multi-channel MR images, which obtain good...
متن کاملAutomated Bayesian segmentation of microvascular white-matter lesions in the ACCORD-MIND study.
PURPOSE Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain...
متن کاملQuantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAUTOMATIC LONGITUDINAL MULTIPLE SCLEROSIS LESION SEGMENTATION: MSmetrix
Accurate and consistent multiple sclerosis (MS) brain lesion segmentation and volumetry could be an added value to MS clinicians. In this paper, MSmetrix is presented, an automatic and reliable method, which uses 3D T1-weighted and FLAIR MR images in a probabilistic model to detect white matter lesions as an outlier with respect to the normal brain, while segmenting the brain tissue into grey m...
متن کاملMAP–Based Framework for Segmentation of MR Brain Images Based on Visual Appearance and Prior Shape
We propose a new MAP-based technique for the unsupervised segmentation of different brain structures (white matter, gray matter, etc.) from T1-weighted MR brain images. In this paper, we follow a procedure like most conventional approaches, in which T1-weighted MR brain images and desired maps of regions (white matter, gray matter, etc.) are modeled by a joint Markov-Gibbs Random Field model (M...
متن کامل